
Fast Type Reconstruction for Dynamically
Typed Programming Languages

Frédéric Pluquet Antoine Marot
Université Libre de Bruxelles

Computer Science Department
Faculty of Sciences

fpluquet@ulb.ac.be - amarot@ulb.ac.be

Roel Wuyts
IMEC, Leuven and Katholieke Universiteit Leuven

roel.wuyts@imec.be

Abstract
Type inference and type reconstruction derive static types for pro-
gram elements that have no static type associated with them. They
have a wide range of usage, such as helping to eliminate the bur-
den of manually specifying types, verifying whether a program is
type-safe, helping to produce more optimized code or helping to
understand programs. While type inference and type reconstruction
is an active field of research, most existing techniques are interested
foremost in the precision of their approaches, at the expense of exe-
cution speed. As a result, existing approaches are not suited to give
direct feedback in development environments, where interactivity
dictates very fast approaches. This paper presents a type recon-
struction algorithm for variables that is extremely fast (in the order
of milliseconds) and reasonably precise (75 percent). The system
is implemented as a byte-code evaluator in several Smalltalk envi-
ronments, and its execution speed and precision are validated on a
number of concrete case studies.

Categories and Subject Descriptors D.2 [Software Engineering]:
D.2.3 Coding Tools and Techniques

General Terms Performance, Experimentation, Algorithms, Hu-
man Factors

Keywords Type Reconstruction, Type Inference, Dynamic Pro-
gramming Languages, Development Environments

1. Introduction
Type inference and type reconstruction are both processes of find-
ing types for a program within a given type system [3]. The differ-
ence between the two lies in the amount of information they have
available. Type reconstruction deals with programs where no type
information is available, while type inference deals with programs
that contain types in certain (otherwise ambiguous) places. Note
that both of these differ from type checking, where the goal is to
verify whether the given static types in a program are correct, not
to find types.

Type inferencers exist for several statically typed languages,
for example for Haskell [15], ML [9], OCaml [4], Scala [12], or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DLS’09, October 26, 2009, Orlando, Florida, USA.
Copyright © 2009 ACM 978-1-60558-769-1/09/10. . . $10.00

Java [16]. They employ sophisticated algorithms to infer types
for programs that contain at least some static type annotations to
resolve ambiguities or help developers.

One obvious application of type reconstruction is for dy-
namically typed object-oriented programming languages, such as
Smalltalk, Python, Perl or Ruby. After all, the lack of static types
has been perceived as one of the drawbacks of dynamic languages,
since it can inhibit program understanding, limits the usability of
refactorings, and means that certain optimizations cannot be done.
Research in this area can be divided in two broad groups. One group
of algorithms does whole program analysis, constructing the types
for every possible construct in the entire program. The problem
with such approaches is that they do not scale very well [13]. An-
other group of algorithms is demand-driven: it will only look for the
type for one specific construct. Demand-driven approaches scale
better, since they do not necessarily have to treat the whole pro-
gram. Moreover, they have a second advantage which is that they
can be chosen to be either more precise or faster [13], by simply
running longer and traversing more of the program.

Most work on type inferencing tries to be as exact as possible
in its result, at the expense of execution speed. This makes sense
when the results are used for program optimization or in the context
of refactorings. But the situation is different when the results are
for better program understanding. In that case, the feedback needs
to be integrated in a development environment, requiring speeds
in the order of milliseconds. The goal in this context is therefore
to trade precision for execution speed, and almost none of the
algorithms we looked at did this. A notable exception, Chuck [13],
is a demand-driven approach implemented in Smalltalk that uses
subgoal pruning. However, when set to be very fast, we found its
precision to be too low to be really useful.

This paper presents an algorithm that reconstructs the types of
variables (instance variables, temporary variables, arguments and
return of method) in the order of 3,5 milliseconds, while still of-
fering a precision usable for program understanding. This perfor-
mance is achieved by two means. First of all, when we want to find
the type for a variable, we only use information found in the meth-
ods of the class where that variable is defined, without even taking
subclasses into account. Hence we severely restrict the part of the
program we need to look at, much more so than in any other ap-
proach that we know of. Secondly, we use a number of heuristics
to improve the precision.

We are fully aware that this approach might be perceived as
’naive’, ’dreadfully simple’ or even ’heresy’ by some, yet this was
intentional. For program understanding purposes in an interactive
environment we are happy with the precision of the system, given
its performance.

The approach has been implemented and is freely available for
different Smalltalk environments, more specifically for Cincom Vi-
sualWorks1 (since 2005), Squeak2 (since 2006) and Squeak/Pharo3

(since 2009). This allowed us to test the heuristics proposed for ex-
ecution speed and accuracy on real-world case studies. We found
that the precision is typically around 75 percent, with execution
speeds in the order of 3.5 milliseconds. We were therefore able to
integrate the approach in the development environment for show-
ing the types of variables in a special pane, for ameliorating code
completion, and for providing type-related feedback.

The rest of the paper is structured as follows. Section 2 gives a
high-level overview of our approach. Section 3 has a detailed look
at how interface types are extracted by taking into account the mes-
sages that are being sent to a variable. Section 4 shows how to ex-
tract assignment types by determining the type of expressions in
assignments. Section 5 discusses how to merge interface types and
assignment types into a final set of types. Section 6 shows how to
apply our technique on other kinds of variables. Section 7 shows
how relations between variables are used to extract more informa-
tion. Section 8 shows the important parts of the implementation.
Section 9 validates our approach on a number of concrete cases.
Section 10 discusses some of the results found in the validation.
Section 11 shows a number of type-oriented tools that we or oth-
ers have implemented based on these results. Section 12 discusses
related work, while Section 13 concludes.

2. Overview
The approach outlined in this paper reconstructs the types of vari-
ables, i.e., instance variables (attributes) of classes, temporary vari-
ables, arguments and return types of methods. It does not look into
class variables or global variables because conceptually they are
very close to the other variables but would require more implemen-
tation work in the tool.

For explaining the algorithm we first show the basic version
of reconstructing the type of a single instance variable of a class,
without taking advantage of relations between variables through
the call graph. Extending this scheme for other variables is later
on explained in Section 6, and how to finally take advantage of
relations between variables is explained in Sec. 7.

Our type-reconstruction algorithm can be decomposed into
three phases:

1. interface type extraction This phase reconstructs the types
according to the messages that are being sent to the variable
in the class where it is defined. This is done in two steps: first of
all the set of messages sent to the variable is collected. Secondly
we look through the system and find all types that understand
this set of selectors. The output of this phase are the interface
types.

2. assignment type extraction This phase reconstructs the types
by looking at assignments made to the variable in the class
where it is defined. It collects all right-hand sides of assign-
ment expressions involving the variable, and applies a series of
heuristics to find the type results of these expressions. These are
then collected in the assignment types.

3. merging: This phase takes the interface types and the assign-
ment types as input, and merges them into the final type results
for the variable.

The following sections explain these phases in detail. Through-
out the explanation we use a running example in Smalltalk, that

1 http://www.cincomsmalltalk.com/
2 http://www.squeak.org/
3 http://www.pharo-project.org/home

Class DateWrapper
superclass: Object
instance variables: 'date'.

DateWrapper>>initialize
” I Initialize my date with the current date.”

date := Date now.

DateWrapper>>date
”I return my date”

ˆdate

DateWrapper>>date: aDate
”I set my date”

date := aDate

DateWrapper>>printOn: aStream
” I print a textual description on the argument aStream”

aStream
nextPutAll: 'Wrapped date: ';
nextPutAll: date weekday;
space;
print: date.

DateWrapper>> < aDateWrapper
”I compare my date with the date of my argument, aDateWrapper”

ˆself date < aDateWrapper date

Figure 1. Source code of the DateWrapper class, used as example
throughout the paper.

is deliberately kept small and easy. The source of the toy example
is shown in Figure 1. It consists of a class DateWrapper that has
one instance variable (date), and five methods: initialize (as-
signs a default date), date (getter method), date: (setter method),
printOn: (provides a textual representation of the wrapper) and <
(a comparison method).

3. Interface Type Extraction
This phase reconstructs the types according to the messages that
are being sent to the variable. This is done in two steps: first of all
the set of messages sent to the variable is collected. Secondly we
look through the system and find all classes that understand this set
of selectors. The output of this phase are the interface types.

3.1 Constructing the Interface
To find the interface for a variable (all the messages sent to that
variable), we simply traverse all the methods of the class where
the variable is defined and collect all the messages sent to that
variable. We call this set the set of direct sends to that variable.
We also construct a second set, namely the set of messages that
are being sent to a getter method for that variable. This we call the
indirect sends for that variable. The union of the direct sends and
the indirect sends gives us the interface for the variable.

Let’s apply this on our example. Since in the body of the
initialize, date and date: methods, no messages are being
sent to the date instance variable, these methods will not contribute
to the interface of the date variable. However, in the body of the
printOn:method we can see that a message weekday is being sent
to date. Therefore this augments the set of direct sends. Finally, in
the method <, we can see that the message < is sent to date’s get-
ter method4, augmenting the set of indirect sends. The interface for

4 In Smalltalk arithmetic operators and comparison operators are just mes-
sage sends.

http://www.cincomsmalltalk.com/
http://www.squeak.org/
http://www.pharo-project.org/home

Object

<
...

Magnitude

bounds
...

Geometric

at:
...

Collection

not
...

Boolean

area
...

Rectangle

<
...

CharacterBlock

understands <

understands <
understands < and weekday

weekday
...

Date

+
...

ArithmeticValue

Figure 2. Finding the highest possible classes in the class hierarchy that implement the selectors < and weekday

variable date, after looking at all the methods, is therefore a set
consisting of two elements, < and weekday.

3.2 Calculating the Interface Types
This step calculates a set of types that understand a given set of
selectors. Since the selectors were those that were being sent to a
variable, the types will be possible types for that variable.

Exactly how the set of types is calculated depends on the pro-
gramming language at hand.

In the case of Smalltalk, types and classes align. Hence we can
rephrase our problem, and calculate a set of classes that understand
a given set of selectors. Given that the Smalltalk classes form a tree,
with the class Object at its root, we devised an efficient iterative
algorithm for doing this. The algorithm iterates over the selectors
in the interface. At each iteration it finds those classes in the class
hierarchy that understand all the selectors that have been processed
so far, and that are the highest possible in the hierarchy.

More specifically, for the first selector, the algorithm will start
at Object, and do a breadth-first traversal of the class hierarchy,
stopping and remembering classes that implement the selector.
The system then proceeds with the second selector and, for each
class that implemented the first selector, finds the subclasses that
implement this second selector. The result is the set of highest
possible classes that implement both selectors. This is then repeated
for the rest of the interface. The end result of the traversal is
therefore the set of highest possible classes in the hierarchy that
understand the given set of selectors.

We can illustrate this with our date example, and by using Fig-
ure 2 to visualize the traversal through a very small portion of the
Smalltalk class hierarchy. Remember that the interface for the date
variable was a set with two selectors, < and weekday. Therefore the
algorithm takes the first element of this set, <. It tests whether class
Object understands this selector, but this is not the case. It there-
fore looks through all direct subclasses of class Object, and finds
class Magnitude that implements the required selector. Therefore
it will not further enumerate the Magnitude hierarchy. However,
it proceeds to enumerate the subclasses of the other three classes
(Collection, Boolean and Geometric), looking for more high-
est possible classes that implement <. It eventually finds one more,
in class CharacterBlock. To recapitulate, starting from Object we
have found two classes that implement <. For the second selector
that needs to be understood, we start from these two classes, since

we need to find the highest possible classes that understand selec-
tors < and weekday. Proceeding as before, we find one class, Date.

Note that it is quite possible that the classes found have sub-
classes themselves. This is not a problem: all of these subclasses
are possible types, since subclassing induces subtyping in Smalltalk
(and, in fact, most object-oriented languages).

4. Assignment Type Extraction
As indicated by the name, the assignment types are found by
investigating right-hand sides in assignments to the variable of
which we want to reconstruct the type, again by looking only at the
methods in the class where variables is defined. The regular way
of handling the right-hand side expressions would be to investigate
the expressions, type them, and add type constraints on the left-
hand side with these results. While this is more precise than what
we do next, it also means that we might end up analyzing a big part
of the system because this is a recursive process.

Therefore we use heuristics in order not to have to recurse
into the actual expressions, and only use local (to the class of
the method we are analyzing). These heuristics will analyze the
right-hand side expression for particular patterns of which we can
infer the results. Before we list the heuristics we used, let’s have
a look at a general assignment expression. We consider two kinds:
either a direct assignment, or a call of a setter method. In Smalltalk
notation, this gives:

• direct assignment: X := Y : assign the result of the expression
Y to variable X.

• indirect assignment: self x: Y : calls a mutator with as argu-
ment the result of evaluating expression Y.

Regarding the type extraction we are interested in the type of
expression Y, for both cases. To find this type, we experimented
with different sets of heuristics. The concrete ones for the Smalltalk
environment Squeak are shown in Table 1.

• Literal value: when a literal value is being used, the type of this
literal is used as result.

• Instance creation: when instances are created of a certain class,
that class is used as the (concrete) type.

• Boolean expressions: when comparison operators are being
used between objects, the result is a Boolean type.

Expression Conditions Type
Literal - Literal type

Class msg:args message is in instance creation protocol Class
X msg Y msg ε {= == < > <= >= =} Boolean
X msg Y msg ε {/ + - * abs negated reciprocal // quo: rem: \\

ceiling floor rounded roundTo: truncated truncateTo:} Number

Table 1. Heuristics to extract types from right-hand-side expressions in Squeak assignments.

• Arithmetic expressions: when arithmetic expressions are being
used, the type result is of an arithmetic type. Which particular
arithmetic type depends on the arithmetic expressions: some
can be specific to integers, for example, while other ones can
be generally applicable.

Note that these heuristics need to be expressed for the language
at hand. Table 1 shows how this can be done for Squeak/Pharo
Smalltalk. Note that the heuristics used are quite general and only
need slight adaptation when used in the Cincom VisualWorks or
even other programming languages.

Note also that these remain heuristics. For instance, if one de-
fines a binary plus method on a non numerical object the heuristic
will add an arithmetic type to the assignment types, which is clearly
incorrect. As mentioned before, doing more analysis of the receiver
could improve the precision, but would be costly.

We can now apply the assignment type extraction on our exam-
ple. We see that there is a (direct) assignment expression in method
initialize, with date as left-hand side. The right-hand side is
an expression that creates an instance of class Date. We therefore
remember Date as possible type. Further on we can see another as-
signment in the setter method for date:. However, from that right-
hand side we do not extract any information, since we remain lo-
cal. Hence the assignment types for instance variable date of class
DateWrapper will be a set containing the single type Date.

5. Merging the Types
Once we have extracted the interface types and the assignment
types, their results need to be merged. This is not a trivial step:
the types found in the set of interface types can be subtypes of the
types found in the set of assignment types, or vice versa.

We also have to deal with data polymorphism, which means
that a variable can be assigned values of different types. This is
already taken into account in a number of approaches, such as in
DCPA [16] to which we come back in Sec. 12. In dynamically
typed languages it is not uncommon for variables to hold values
of different unrelated types, so the merging has to take care not to
remove these possibilities. Put in other words: it is quite possible
that the reconstruction results in a set of unrelated types, and that
the result is valid (while it would not be in most type systems, that
expect a type relation between these reconstructed types).

There is one other difference between interface types and as-
signment types that needs to be taken into account before we show
how both can be merged. The interface types that are reconstructed
are abstract types: they indicate that at runtime the variable is al-
lowed to be any subtype of that type. In our DateWrapper exam-
ple, as far as the interface types are concerned, the date variable
can hold any object as long as it understands weekday. These could
be instances of the class Date, or might be subclasses of class Date
(since subclassing induces subtyping). The assignment types on the
other hand are concrete types: at runtime there will be a moment in
the execution where the variable holds an instance of the class cor-
responding to the type.

Take for example the pieces of Smalltalk code shown in Fig-
ure 3. They all show an assignment expression and a message send.

x := 1. x := Magnitude new. x := 1.
x + y. x weekday. x at: 5.

(1) (2) (3)

Figure 3. Three pieces of code to illustrate merge difficulties.

As we have seen before, the assignment expression will be used to
calculate the set of assignment types, while the message sends will
be used to calculate the set of interface types. We can have the fol-
lowing four possibilities, the first three of which correspond with
their respective number in Figure 3:

1. assignment type subtype of interface type: In this scenario,
an interface type is reconstructed, an abstract type for which
several concrete (sub)types are plausible at runtime. The assign-
ment type is found to be one of these types: it is a subtype of
the interface type. In the left column of Figure 3 we see that
the interface type will be Number, while the assignment type is
SmallInteger, a subclass of Number. Note that this scenario
is the most frequently occurring.

2. interface type subtype of assignment type: It can occur that
the assignment type does not lie within the hierarchy defined
by the interface type, but is a supertype of that hierarchy. In
that case the concrete assignment type is more general than the
abstract interface type. This is illustrated in the middle pane
of Figure 3: the extracted type (which would be Date, since it
implements a method weekday) is subtype of the assignment
type (Magnitude).

3. assignment and interface type unrelated: Another possibil-
ity is related to the previous one, but here the assignment type
and the interface type are completely unrelated. This is a tech-
nique sometimes used in dynamic languages. For example, one
can hold a collection of objects and, when there is only one
object in the collection, decide to directly hold that object in-
stead of a collection with only one element. When doing type
reconstruction this can easily lead to two different types being
extracted: one a collection type, and a second, completely dif-
ferent type. The right side of Figure 3 shows how an assignment
type could be SmallInteger, while the interface type would
be Collection, two completely separated types.

4. assignment type same as the interface type: Both can be the
same, in which case there is no need to merge.

When merging the sets of interface and assignment types, these
cases need to be taken into account. We therefore tried a number of
different merging approaches:

• with the AbstractMerger the result of the first case in the exam-
ple will be the interface type, since it is the most abstract.

• the ConcreteMerger will favor the assignment type for the first
case in the example. The motivation for this choice is that it
is very likely that the concrete type will indeed be the one as-
signed, given that it corresponds to the active type. However,

Class TextBlock
superclass: Object
instance variables: 'myChar'.

TextBlock>>areaOf: aRect
”I return the area of my argument”
ˆaRect area

TextBlock>>defaultSquaredArea
”I return the squared area of a new CharacterBlock”
ˆ(self areaOf: CharacterBlock new) squared

TextBlock>>newArea
”I return the area of a call to putNewChar”
ˆself areaOf: self putNewChar

TextBlock>>putNewChar
”I return myChar, possibly replacing it with a new CharacterBlock

instance”
| old |
old := myChar.
old bounds ifNil: [myChar := CharacterBlock new].
ˆold

Figure 4. Source code of the TextBlock class

this is a heuristic, and some valid types might be omitted be-
cause of it.

• the AssignmentsFirstMerger is a refinement of the Concrete-
Merger and therefore also favors the assignment types over the
interface types. However when there are assignment types and
all interface types are subtypes of the assignment types, the re-
sult will be the assignment types (and the found interface types
are not used). It only considers the interface types when there
is no assignment information, or when there are interface type
that are not related to the assignment types.

In the experiments we show the results for the ConcreteMerger
and AssignmentsFirstMerger. We omitted the results for the Ab-
stractMerger due to space reasons and because they are less useful
for program understanding because their precision is lower.

6. Beyond instance variables
As mentioned in Sec. 2 we decided to first explain the basic work-
ing of our algorithm focussing on instance variables. In this section
we show how the same principles apply to other kinds of variables:
temporary variables, arguments and returns of methods.

The extraction of the interface types and assignment types of
temporary variables is the same as what is explained for instance
variables, except that we stay in the method containing this tempo-
rary variable.

Fig. 4 shows some Smalltalk code with more interesting rela-
tions between variables than the example used previously. The im-
plementation does not implement anything particularly useful. It
defines a class TextBlock, subclass of class Object and with one
instance variable, myChar. It has four methods:

• areaOf: returns the area of its argument,
• defaultSquaredArea squares the result of calling areaOf

with a newly created CharacterBlock object,
• newArea passes the result of calling putNewChar as argument

in the call to areaOf:,
• putNewChar uses a temporary value to store instance variable
myChar and does a conditional assignment to myChar.

For type reconstruction we consider an argument of a method
as a read only temporary variable (no assignment to this argument
is possible within the method body) without lack of generality5.
Even though there can be no direct assignments to an argument
in the body of the method we can use calls to the method to find
assignment types. More specifically we consider all self sends to
the method defining the argument we want to type, from methods
in the same class. These self sends contain expressions we can use
to extract assignments types from, in the same way as using right-
hand expressions in direct assignments.

Suppose we want to type the argument aRect of method
areaOf: in the source code of Fig. 4. Method areaOf: is called
through a self-send in method defaultSquaredArea. The argu-
ment expression in that message can be analyzed as explained in
Sec. 4 for right-hand side expressions, and will yield an assign-
ment type CharacterBlock. We add this type in the assignment
types set of aRect.

The return type of a method only has interface types. Return
types are found while a message is sent directly to the result of
sending another message. For instance, the message squared is
sent to the result of areaOf: in method defaultSquaredArea.
The value returned by the method areaOf: must therefore under-
stand the message squared. We add this message to its set of direct
sends.

7. Relations between variables
Finding the interface and assignment types is done without exploit-
ing relations between variables. This section shows how to discover
relations between the variables through the call graph, and use this
to augment the interface constructed for variables as well as the as-
signments. This remains cheap because we still restrict ourselves to
self sends to methods only defined in our class.

We say that two variables are related when one variable is
assigned to the second one. This relation has an important property:
two related variables will share the same interface types and the
same assignment types. The property also implies that this relation
is transitive. If a is assigned to b and b assigned to c, the three
variables a, b and c share the same interface and assignment types.

Fig. 5 shows the successive results of processing the methods
in order to extract the variable interface and finding the assignment
types for the variables in the code shown in Fig. 4.

Each grey-filled rectangle shows the interface and assignment
types found after analyzing a method (unused variables are not
shown). The interface of each variable (i.e., all messages sent to
this variable) is collected in the case labelled ”I”, under the vari-
able name. For instance, the collected interface of the argument
aRect after the analysis of areaOf contains the selector #area. The
assignment types of each variable are shown in the case labelled
”A”. For instance, after the analysis of the first two methods, the
argument aRect has CharacterBlock as assignment type. Finally a
relation between two variables is shown by a double arrow. During
the analysis of newArea we found that the return of putNewChar
is related to the argument aRect (because it is passed as argument).

The bottom grey rectangle shows the complete information
found after analyzing all methods of the class. Because the relations
are transitive we can merge the interfaces and assignment types of
related variables (Fig. 6). They will therefore have the same recon-
structed types.

5 For languages where arguments are assignable we would consider them to
be exactly like temporary variables.

A CharacterBlock
#areaI

 aRect

A
#areaI

 aRect

A
#squaredI

 return of areaOf:

A CharacterBlock
#areaI

 aRect

A
#squaredI

 return of areaOf:

A
I

 return of putNewChar

A CharacterBlock
#areaI

 aRect

A
#squaredI

 return of areaOf:

A
I

 return of putNewChar

A CharacterBlock
I

 myChar

A
I
 return of newArea

A
#boundsI

 old

After analysis of putNewChar

After analysis of newArea

After analysis of
defaultSquaredArea

After analysis of areaOf:

Figure 5. Variable relation information collected for the code
shown in Fig. 4.

A CharacterBlock
#area, #boundsI

 aRect

A
#squaredI return of areaOf:

 return of
 putNewChar

 myChar

 return of newArea

 old

Figure 6. Merge all interface and assignment types for transitive
relations in Fig. 5.

8. Implementation
The approach presented in the previous section can be implemented
in different ways. One possibility is to use the abstract syntax tree,
and using it to collect all the information needed. This is one
solution we have implemented as an example in previous work
on logic meta programming [7]. It has the advantage that it is
not very hard to implement the approach and makes it easy to
experiment with various heuristics. Applying the approach outlined
in the paper to many languages for which it is easy to construct an
abstract syntax tree is relatively straightforward. The disadvantage,
however, is that the code needs to be parsed before it can be
traversed, which hinders performance.

To maximize performance, we decided to implement the ap-
proach as a bytecode interpreter. Since in Smalltalk the bytecodes
of all methods live in memory, the actual type reconstruction can
immediately start. This means that parsing is not needed, and no ex-
tra memory is needed to store the parse tree. The price we pay for

this is ease-of-implementation. While walking a parse tree is rela-
tively straightforward, writing it as an efficient bytecode interpreter
is more challenging. We constantly manipulate a stack in order to
push and pop intermediate typing results, and there is not a lot of
context information to work with: when we have the bytecodes of
one method, we cannot easily fetch information about other meth-
ods of the same class where that method is residing in. When walk-
ing a parse tree, the data structure provides this information in a
much more accessible way.

The implementation does one pass over the methods of a class,
and in this one pass constructs the interface and assignment types
for all variables declared in that class, exploiting the relations
between variables.

As a side note it can be interesting to know that the implemen-
tation works for several Smalltalk environments (Cincom Visual-
Works, Squeak and Squeak/Pharo). The implementations are nearly
identical, with only minor differences in the bytecode interpreta-
tion6

9. Validation
Our approach claims to be more efficient than other approaches
(with respect to execution speed and scalability), while still pro-
viding a precision which is acceptable for program understanding
purposes. To validate this claim, we have done experiments on three
applications for the Squeak/Pharo Smalltalk distribution. The first
one is Dr.Geo II7, a tool to interactively create geometric figures
with respect to their geometric constraints. The second one is a web
application framework named Seaside8. The last one is Smallwiki9,
a fully object-oriented wiki implementation. We used these appli-
cations because they are real applications that are practically used
and not trivial, because they have extensive unit test suites, and be-
cause they are available for anyone that would like to validate our
results.

9.1 Execution speed and scalability
We benchmarked our system on a complete Squeak/Pharo image
and on the three applications described above. Table 2 shows infor-
mation about the number of classes and the number of variables (at-
tributes, temporary variables, arguments and return types of meth-
ods) defined by these classes. The following columns represents
the time in milliseconds to compute the types with both mergers.
For each of them 2 times are displayed: tt the total time, tpv the
average time per variable.

We remark that both mergers show very similar execution times.
Doing the type reconstruction for one variable takes on average 3,5
milliseconds.

9.2 Precision
This is a notoriously difficult notion to measure in dynamically
typed languages because applications carry no types at all and
we therefore would have to manually check the results of each
reconstructed type to see if it is correct. Because this is very hard
and time consuming to do for the non-trivial applications that we
want to show we tackled the problem differently.

We decided to monitor the execution of the applications we
chose, running (elaborate) unit test suites as well as running demo
applications and interacting with the applications in general. We
recorded every different type stored in variables (including argu-

6 Most importantly, Squeak, Cincom VisualWorks and Squeak/Pharo have
different byte codes for block closures.
7 http://wiki.laptop.org/go/DrGeo
8 http://www.seaside.st/
9 http://smallwiki.unibe.ch/smallwiki/

http://wiki.laptop.org/go/DrGeo
http://www.seaside.st/
http://smallwiki.unibe.ch/smallwiki/

Application # classes # variables ConcreteMerger AssignmentsFirstMerger
tt tpv tt tpv

All system classes 2830 112247 355209 3,16 354835 3,16
DrGeoII 80 2478 8472 3,42 8456 3,41
Seaside 124 3437 14864 4,32 14282 4,16
SmallWiki 100 2140 6703 3,13 6439 3,04
Average - - - 3.50 - 3.44

Table 2. Type reconstruction time in milliseconds (tt: total time, tpv: time per variable)

ments and return types) of classes of the applications. The (con-
crete) type information retrieved this way may be incomplete but
we believe that if the execution of the application covers enough
different scenarios the recorded types should be near completeness
and enough to validate the results of our static type reconstruction.

Before we delve into these results we first define our notion of
precision.

9.2.1 Notion of correctness
Before defining what we consider as a correct, partially correct or
incorrect result for the reconstructed types we need to define some
properties.

Let Ri be the set of reconstructed types for a variable i and Ci

the set of dynamically recorded types of the same variable.

Definition Ri covers Ci iff for each c ∈ Ci there is a r ∈ Ri such
that r is equal to c or a supertype of c.

Definition Ri is focused on Ci iff for each r ∈ Ri there is a c ∈ Ci

such that r is equal to c or a supertype of c.

Definition Ri is too general for Ci iff Object ∈ Ri and Object
is not the smallest common supertype (with respect to the type
hierarchy) of the elements of Ci.

We remind that by construction our type reconstruction ensures
that if Object is in the reconstructed types, it is actually the only
type in that set.

We have now the three properties we need to classify experi-
mental results as correct, partially correct or incorrect.

Definition Ri is correct for Ci iff Ri covers Ci, is focused on Ci

and is not too general for Ci.

Definition Ri is partially correct for Ci iff Ri covers Ci, is not
too general for Ci but is not focused on Ci.

Definition Ri is incorrect for Ci iff Ri does not cover Ci.

Definition There is no enough information iff Ri is too general for
Ci.

9.2.2 Experimental Results
The percentage of (partially) correct and incorrect reconstructed
types is given in Table 3. Two of the mergers explained in Sec.
5 were used in order to compare them. We see that in around
75% of the cases, the system finds correct types with both mergers
(possibly including incorrect ones for partially correct results). The
difference between the mergers lies in the proportion of partially
correct results which is higher with the assignments-first merger.
This is perfectly understandable since the concrete merger give the
priority on the interface types found but will still include results

from assignment types. Its results will thus include all the classes
(with some unrelated to the actual types) sharing the same interface
parts while the assignments-first merger will typically have less
classes (the ones assigned to the variable).

We say that a reconstructed type is optimal if it is the small-
est type (with respect to the type hierarchy) compatible with the
recorded types. It is interesting to see in Table 3 that in around 80%
of the cases the reconstructed types (in correct or partially correct
results) are optimal. This is positive because it means that when
correct results are found they are not too abstract.

The fourth entry of Table 3 shows the percentage of cases in
which the type reconstruction did not find enough information and
returned Object. It is about 25% of cases.

The percentage of incorrect reconstructed types is very small
(about 2 percent). We discuss these cases in the next section.

10. Discussion
Doing detailed analysis of our experimental results of the Seaside
application revealed two interesting reasons for the cases of incor-
rectness of our type reconstructor.

Looking through the incorrect results found by our type recon-
structor we stumbled on the class WAAnchorTag, and more par-
ticularly its instance variable url. The reconstructed type for this
variable was WAUrl. However the concrete types found during test
runs and interacting with the program showed that this variable in-
deed stored WAUrl objects, but also ByteString objects (which
have no relation to WAUrl objects)! Following our correctness rules
this case is therefore incorrect. Manually inspecting the implemen-
tation in detail reveals that this is actually a bug in Seaside because
the code clearly assumes WAUrl objects.

Another case we found has to do with reflection. Our type re-
construction has no problems with reflection: reflective expressions
will simply not be taken into account while regular usage of the
variable will still result in type reconstruction. In one case, for ex-
ample, a reconstructed type was found but the concrete types re-
vealed that there was another type that was also used. Investigating
why this did not show up in the reconstructed type we noted that the
code first checked whether a message was understood before actu-
ally sending it. Therefore the resulting implementation is correct,
and it shows that we find an approximative result.

11. Using the Type Information
Several tools benefit from the types that can be reconstructed from
the bytecodes, and we implemented some examples in Cincom
VisualWorks. First of all we integrated an information pane directly
in the Smalltalk development browser, which is shown in Fig. 7.
It shows, for each instance variable of a class, the extracted types.
The type information can be selected and explained: this shows for
an instance variable the interface types and the assignment types,
helping to gain a better insight in the code and the reconstructed
type.

Application Kind of Concrete Merger
variables Correct Part.Correct Incorrect No enough information Optimal

DrGeoII Attributes 30,89 37,40 0,81 30,89 80,95
Other 59,12 20,09 1,85 18,94 83,67
All 52,88 23,92 1,62 21,58 83,14

Seaside Attributes 37,16 35,78 2,29 24,77 80,50
Other 56,30 13,94 2,13 27,64 79,93
All 53,49 17,14 2,15 27,22 70,63

Smallwiki Attributes 45,38 31,13 3,77 19,81 65,43
Other 54,19 17,41 1,18 27,23 80,80
All 53,10 19,08 1,49 26,32 78,82

Application Kind of AssignmentFirst Merger
variables Correct Part.Correct Incorrect No enough information Optimal

DrGeoII Attributes 47,97 19,51 1,63 30,89 83,14
Other 61,89 17,09 2,08 18,94 85,09
All 58,81 17,63 1,98 21,58 84,00

Seaside Attributes 53,67 19,27 2,29 24,77 80,50
Other 58,90 11,02 1,81 28,27 80,18
All 58,13 12,23 1,88 27,76 80,23

Smallwiki Attributes 66,04 10,38 3,77 19,81 65,43
Other 59,03 11,65 0,92 28,40 81,11
All 59,89 11,49 1,26 27,36 79,07

Table 3. Precision experiment results.

Figure 7. Smalltalk SystemBrowser extended with a type information pane and the type explanation dialog for a selected type.

A second tool we made, shown in Fig. 8 uses the types to warn
about certain type errors. After a method is being accepted into a
class10, a type check is launched that compares the type of each
instance variable of the class before the method was added with
types extracted after the method was added. When type conflicts
occur, a window that shows type violations is being updated. Using

10 Smalltalk uses incremental compilation, and therefore this check happens
immediately after a method is being compiled. In environments that do not
support incremental compilation, the checks can be done when a class is
compiled.

the same explanation tools as described in previous paragraphs, the
user can get an idea about the conflict and resolve it.

Note that there is an important difference with type errors re-
turned in statically typed languages: in our case the program is
compiled and installed. A type error in a statically typed language
will not allow the program to be compiled at all. We intentionally
decided to generate only a warning to the user (we could as eas-
ily have opted for an approach to raise an error that would have
prevented the method to be installed). We chose to generate the
warning to not hinder the development process, in accordance with
other Smalltalk tools.

Figure 8. Type error warning application. Clicking a type problem brings up a dialog box that can be used to define a new static type and
see the reason for the warning.

A third tool that has been implemented is a code completion
tool (called eCompletion11). Without type reconstruction the com-
pletion can only use a global symbol table containing all the class
names, method names, etc.. Hence, to reuse the example we in-
troduced before, when one would ask to complete the name of a
method starting with ’in’ being sent to the date instance variable,
one would get a huge list. Using the reconstructed type eComple-
tion can limit this list to the set of messages understood by the
Date class that start with ’in’. Robbes et al. [10] also used our
type reconstruction system in order to improve the performance of
a completion tool based on the program history.

12. Related Work
First of all we again stress that our main goal was to have a very
fast approach, with reasonable precision. In general this makes our
reconstructor very different from most other type inference or re-
construction approaches that focus on precision. The reason is the
difference in application. While we use our approach in develop-
ment environments, and therefore embrace a limited precision on-
demand approach, other approaches are part of compilation or op-
timization approaches and can spend some more time to gain in
precision.

In the rest of the section we first have a look at type inferencing
approaches in general. Then we look at a number of tools and
approaches specifically for dynamically typed languages.

12.1 General approaches
One of the basic techniques for type inferencing object-oriented
programs is the Cartesian Product Algorithm approach (CPA) [1],
an extension of the Palsberg and Schwartzbach type inferencer [8].
The local constraints in CPA correspond more or less to the inter-
face and assignment types. However, CPA goes further and also
looks at non-local constraints to gain in precision. While it deals
fairly well with parametric polymorphism, it is not very good at
handling data polymorphism [16].

Extensions of CPA exist, such as DCPA [16], that is more
precise yet has execution times comparable to CPA. The execution
times lie in the order of tens of seconds for bigger case studies, not

11 by Ruben Bakker (http://uncomplex.net/ecompletion/)

milliseconds. Moreover, because our approach is on-demand it will
always take in the order of 3,5 milliseconds for a variable, while
these approaches will take much more time for the first variable (or
when code has changed and it needs to be re-run).

12.2 Dynamic Language Tools
There are different versions of Strongtalk that are relevant for the
research in this paper. First of all there is a version of Strongtalk,
which we will call Strongtalk 1, with a well-known paper published
in Ecoop [2]. Strongtalk 1 is primarily a type-checking approach
that is downwards compatible with Smalltalk and therefore allows
to run untyped Smalltalk code. Static types can then be added at
will and are then taken into account for type checking. Strongtalk
1 does not do actual type inference.

A start-up company reimplemented Strongtalk 1, resulting in
what we will call Strongtalk 2, which was later on released as
open-source project12. Strongtalk 2 contains a strong, static type
system for Smalltalk that is both optional and incremental. We
wanted to run the same experiments we did in Squeak/Pharo in
Strongtalk 2 in order to directly compare the results but have to port
the applications to use the Strongtalk 2’s different class libraries.
Alternatively we could port our approach to Strongtalk, which
would not be too hard if we implementation it on the AST instead
of on the bytecodes. We could then reconstruct the types of code
for which we know the types (but not using that information),
and compare the results with the types. We are continuing the
investigation.

Starkiller [11] is a type inferencer and compiler for Python,
with a type inference algorithm based on CPA as explained in the
previous paragraph. Starkiller showed that with an implementation
of Fibonacci it was able to significantly outperform other compilers
and optimizers for Python, due to its type inference. Execution
times for the compiler or inferencer are not given, and it is unclear
how it would fare on other (more complex) benchmarks. Because
the code was never released we were not able to experiment with
it ourselves. Due to the fact that it is based on CPA we assume it
inherits the same advantages and disadvantages that we discussed
previously.

12 http://www.strongtalk.org/index.html

http://www.strongtalk.org/index.html

Cincom VisualWorks uses bytecode analysis to infer the types
of instance variables and use this information when generating a
default comment for a class. This is related to what we do, but
their approach is simpler because it is limited to instance variables,
it only takes messages sent to instance variables into account and
their implementation is about a factor of 5 slower.

Chuck is a type inferencer [14, 13] that uses subgoal pruning,
an approach that, like ours, also trades precision for scalability.
Chuck first computes an initial set of tables before type inference is
done, which can take quite some time. Note that the tables are kept
up-to-date incrementally, and therefore only need to be calculated
once. We are investigating how our approach could be used to
substantially speed up their table calculation, because it is similar
to what we do.

Diamondback Ruby (or DRuby) [5] is a tool that aims to inte-
grate static typing into Ruby. It uses a constraint-based approach.
From the experiments it seems to be quite fast on smaller Ruby
programs (about 2 seconds on programs of 100 to 500 lines of code
on a machine comparable to ours but with more memory), but we
process such programs in the order of milliseconds. The largest pro-
gram tested, of about 900 lines of code, takes 36 seconds but this
discrepancy is not explained and it is unclear whether this is due to
scaling issues or some particularly hard to analyze code. Given the
fact that this system is available we plan to apply DRuby on bigger
case studies to investigate this in more detail.

13. Conclusion
The problem we tackled with this paper is how to reconstruct types
in dynamically typed languages to ease program understanding.
Because we want to be able to integrate the results in interactive
development tools we needed a fast approach and looked for a bal-
ance between execution speed and precision. Therefore we devel-
oped a type reconstruction approach that relies on extracting inter-
face types by looking at the messages sent to a variable only in the
context of the class where the variable is used, and merging these
results with types found by heuristics working on right-hand side
assignment expressions. The contribution is not of a theoretical na-
ture, but nevertheless shows that taking a very pragmatic and lim-
ited, and hence fast, approach is enough to give usable results for
a number of applications of which we showed some. Our current
approach is very fast. It is actually so fast that we plan to extend it
with some more advanced reasoning. As long as we remain with an
execution speed in the neighborhood of tens of milliseconds the in-
teractivity will not be harmed and we can try to increase precision.
We are also investigating whether a variant of our approach that just
uses heuristics that do not introduce false positives cannot be used
as first (filtering) pass for classical type reconstruction techniques.
Last but not least we plan to use our technique on other dynami-
cally typed languages like Ruby and Python, because we strongly
believe that this is easy to achieve and might benefit developers
in these languages as well. We are even considering trying this on
statically typed code and directly compare the execution speeds and
precision with for example the DCPA results [16].

Acknowledgments
We thank the users for their valuable feedback on RoelTyper, the
tool that implements these ideas and that has been freely avail-
able for Cincom VisualWorks, Squeak and Squeak/Pharo for many
years. We also thank Gilad Bracha, Stéphane Ducasse, and Wim
Lybaert for their comments and discussions on early drafts of this
paper.

References
[1] O. Agesen. The cartesian product algorithm. In W. Olthoff, editor,

Proceedings ECOOP ’95, volume 952 of LNCS, pages 2–26, Aarhus,
Denmark, Aug. 1995. Springer-Verlag.

[2] G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk
in a production environment. In Proceedings OOPSLA ’93, ACM
SIGPLAN Notices, volume 28, pages 215–230, Oct. 1993.

[3] L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer
Science and Engineering Handbook, chapter 103, pages 2208–2236.
CRC Press, Boca Raton, FL, 1997.

[4] Chailloux. Développement d’applications avec Objective CAML.
O’Reilly, 2000.

[5] M. Furr, J. hoon (David) An, J. S. Foster, and M. Hicks. Static type
inference for ruby. To appear in OOPS track, SAC 2009, 2009.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, Mass., 1995.

[7] K. Mens, I. Michiels, and R. Wuyts. Supporting software development
through declaratively codified programming patterns. SEKE 2001
Special Issue of Elsevier Journal on Expert Systems with Applications,
2001.

[8] J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In
Proceedings OOPSLA ’91, ACM SIGPLAN Notices, volume 26, pages
146–161, Nov. 1991.

[9] L. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

[10] R. Robbes and M. Lanza. How program history can improve code
completion. In ASE: 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), 15-19 September 2008,
L’Aquila, Italy, pages 317–326, 2008.

[11] M. Salib. Starkiller: A static type inferencer and compiler for python.
Master’s thesis, Massachusetts Institute of Technology, may 2004.

[12] The scala programming language. http://lamp.epfl.ch/scala/.
[13] S. A. Spoon and O. Shivers. Demand-driven type inference with

subgoal pruning: Trading precision for scalability. In Proceedings of
ECOOP’04, pages 51–74, 2004.

[14] S. A. Spoon and O. Shivers. Dynamic data polyvariance using source-
tagged classes. In R. Wuyts, editor, Proceedings of the Dynamic
Languages Symposium’05, pages 35–48. ACM Digital Library, 2005.

[15] S. Thompson. Haskell: The Craft of Functional Programming (2nd
edition). Addison Wesley, Reading, Mass., 1999.

[16] T. Wang and S. F. Smith. Precise constraint-based type inference for
java. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Proceed-
ings ECOOP ’01, volume 2072 of LNCS, pages 99–118, Budapest,
Hungary, June 2001. Springer-Verlag.

	Introduction
	Overview
	Interface Type Extraction
	Constructing the Interface
	Calculating the Interface Types

	Assignment Type Extraction
	Merging the Types
	Beyond instance variables
	Relations between variables
	Implementation
	Validation
	Execution speed and scalability
	Precision
	Notion of correctness
	Experimental Results

	Discussion
	Using the Type Information
	Related Work
	General approaches
	Dynamic Language Tools

	Conclusion

